Published in

American Scientific Publishers, Journal of Nanoscience and Nanotechnology, 6(19), p. 3135-3147, 2019

DOI: 10.1166/jnn.2019.16651

Links

Tools

Export citation

Search in Google Scholar

Nanostructured Catalysts for Dry-Reforming of Methane

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The manuscript deals on the main progress achieved by global scientific research on the development of nanostructured catalysts for dry-reforming reaction. The importance to have a global vision on this topic is strictly related to the most currently and important challenges in the sustainable energy production. In fact, dry-reforming is one of the few known processes in which greenhouse gases are utilized as reactants (methane and carbon dioxide) to produce syngas. Syngas represents the basis for liquid fuel production by Fischer-Tropsch process. In this broad and current context, the catalyst development plays a pivotal role due to its great influence on efficiency, and therefore on the costs, of the whole process. Several are the aspects to consider during the catalyst design: role of metal, interaction between metal and support, role of promoters and resistance to the coke deactivation. These issues, as well as the thermodynamics of the process, are the main aspects of which this review speaks about.