Published in

MDPI, Materials, 5(12), p. 734, 2019

DOI: 10.3390/ma12050734

Links

Tools

Export citation

Search in Google Scholar

Thermoelectric Properties of Scandium Sesquitelluride

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Rare-earth (RE) tellurides have been studied extensively for use in high-temperature thermoelectric applications. Specifically, lanthanum and praseodymium-based compounds with the Th3P4 structure type have demonstrated dimensionless thermoelectric figures of merit (zT) up to 1.7 at 1200 K. Scandium, while not part of the lanthanide series, is considered a RE element due to its chemical similarity. However, little is known about the thermoelectric properties of the tellurides of scandium. Here, we synthesized scandium sesquitelluride (Sc2Te3) using a mechanochemical approach and formed sintered compacts through spark plasma sintering (SPS). Temperature-dependent thermoelectric properties were measured from 300–1100 K. Sc2Te3 exhibited a peak zT = 0.3 over the broad range of 500–750 K due to an appreciable power factor and low-lattice thermal conductivity in the mid-temperature range.