Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Quaternary, 1(2), p. 4, 2019

DOI: 10.3390/quat2010004

Links

Tools

Export citation

Search in Google Scholar

A Window into Africa’s Past Hydroclimates: The SISAL_v1 Database Contribution

Journal article published in 2019 by Kerstin Braun, Carole Nehme, Robyn Pickering, Mike Rogerson, Nick Scroxton ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Africa spans the hemispheres from temperate region to temperate region and has a long history of hominin evolution. Although the number of Quaternary palaeoclimatic records from the continent is increasing, much of the history of spatial and temporal climatic variability is still debated. Speleothems, as archives of terrestrial hydroclimate variability, can help reveal this history. Here we review the progress made to date, with a focus on the first version of the Speleothem Isotopes Synthesis and AnaLysis (SISAL) database. The geology of Africa has limited development of large karst regions to four areas: along the northern coast bordering the Mediterranean, eastern Africa and the Horn of Africa, southwestern Africa and southern Africa. Exploitation of the speleothem palaeoclimate archives in these regions is uneven, with long histories of research, e.g., in South Africa, but large areas with no investigations such as West Africa. Consequently, the evidence of past climate change reviewed here is irregularly sampled in both time and space. Nevertheless, we show evidence of migration of the monsoon belt, with enhanced rainfall during interglacials observed in northeast Africa, southern Arabia and the northern part of southern Africa. Evidence from eastern Africa indicates significant decadal and centennial scale rainfall variability. In northwestern and southern Africa, precession and eccentricity influence speleothem growth, largely through changing synoptic storm activity.