Published in

Elsevier, Proceedings of the Combustion Institute, 1(31), p. 611-619, 2007

DOI: 10.1016/j.proci.2006.07.229

Links

Tools

Export citation

Search in Google Scholar

Measurement and modeling of the sooting propensity of binary fuel mixtures

Journal article published in 2006 by S. Trottier, H. Guo, G. J. Smallwood ORCID, M .R R. Johnson
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The sooting behaviour of binary fuel mixtures was evaluated both experimentally and through computer simulations. The soot volume fraction in laminar diffusion flames of mixtures of ethylene/propane, methane/ethylene, methane/propane, methane/ethane, methane/butane, ethane/propane and ethane/ethylene fuels was measured using 2-dimensional line of sight attenuation. A synergistic effect was observed for the ethylene/propane, methane/ethylene, methane/ethane and ethane/ethylene mixtures. The synergistic effect translated into a higher soot concentration for a mixture fraction than could be yielded by the added contribution of both pure fuels. Such an effect was not observed for the methane/propane, methane/butane and ethane/propane mixtures. Through experiments in which the flame temperature was kept constant, it was determined that the synergistic effect in the methane/ethylene mixture is very temperature dependent whereas, that in the ethylene/propane mixture is not. This phenomenon was further studied through the modeling of the ethylene/propane mixture. Numerical simulations were carried out using two different soot models. The simulations confirmed the presence of a synergistic effect. It was found that the effect could be directly correlated to a synergistic effect in the concentration of n-C4H5 and n-C4H3, which could be traced back to an interaction between ethylene and methyl radical species. These results yield further insight into the pathways to soot formation and highlight the importance of further analyzing binary fuel mixtures as a means of understanding soot formation in practical devices using industrial fuels. ; peer reviewed: ; NRC Pub: Yes ; system details: machine converted author identifier PE to PID, February 2012