Published in

MDPI, Fibers, 2(7), p. 17, 2019

DOI: 10.3390/fib7020017

Links

Tools

Export citation

Search in Google Scholar

Temperature Dependent Strain/Damage Monitoring of Glass/Epoxy Composites with Graphene as a Piezoresistive Interphase

Journal article published in 2019 by Haroon Mahmood, Andrea Dorigato, Alessandro Pegoretti ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Graphene as an interphase not only improves the mechanical performance of fiber reinforced polymer composites but also induces functional properties like electrical conductivity, thus providing the possibility of strain monitoring in real time. At this aim, graphene oxide (GO) was electrophoretically deposited at different applied potentials on glass fibers to create a uniform coating and was subsequently chemically reduced to obtain a conductive layer of reduced graphene oxide (rGO). After the optimization of the deposition process, composite laminates were prepared by hand lay-up with an epoxy resin, followed by curing in vacuum bag. The deposited rGO interphase improved the dynamic moduli (storage and loss modulus), the flexural strength (+23%), and interlaminar shear strength (ILSS) (+29%) of the composites. Moreover, laminates reinforced with rGO-coated glass fibers showed an electrical resistivity in the order of ~101 Ω·m, with a negative temperature coefficient. The piezoresistivity of the composites was monitored under flexural loading under isothermal conditions, and strain/damage monitoring was evaluated at different temperatures through the change of the electrical resistance with the applied strain.