Published in

Wiley, American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 7(156), p. 835-843, 2011

DOI: 10.1002/ajmg.b.31229

Links

Tools

Export citation

Search in Google Scholar

SLC9A9 mutations, gene expression and protein-protein interactions in rat models of attention-deficit/hyperactivity disorder

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

SLC9A9 (solute carrier family 9, member 9, also known as Na+/H+ exchanger member (NHE9)) is a membrane protein that regulates the luminal pH of the recycling endosome, an essential organelle for synaptic transmission and plasticity. SLC9A9 has been implicated in human attention deficit hyperactivity disorder (ADHD) and in rat studies of hyperactivity. We examined the SLC9A9 gene sequence and expression profile in prefrontal cortex, dorsal striatum and hippocampus in two genetic rat models of ADHD. We report two mutations in a rat model of inattentive ADHD, the WKY/NCrl rat, which affect the interaction of SLC9A9 with calcineurin homologous protein (CHP). We observed an age-dependent abnormal expression of SLC9A9 in brains of this inattentive model and in the Spontaneous Hypertensive Rat (SHR) model of ADHD. Our data suggest a novel mechanism whereby SLC9A9 sequence variants and abnormalities in gene expression could contribute to the ADHD-like symptoms of rat models and possibly the pathophysiology of ADHD in humans.