Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Nature Communications, 1(10), 2019

DOI: 10.1038/s41467-019-08440-6

Links

Tools

Export citation

Search in Google Scholar

Ferromagnetism above 1000 K in a highly cation-ordered double-perovskite insulator Sr3OsO6

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractMagnetic insulators have wide-ranging applications, including microwave devices, permanent magnets and future spintronic devices. However, the record Curie temperature (TC), which determines the temperature range in which any ferri/ferromagnetic system remains stable, has stood still for over eight decades. Here we report that a highly B-site ordered cubic double-perovskite insulator, Sr3OsO6, has the highest TC (of ~1060 K) among all insulators and oxides; also, this is the highest magnetic ordering temperature in any compound without 3d transition elements. The cubic B-site ordering is confirmed by atomic-resolution scanning transmission electron microscopy. The electronic structure calculations elucidate a ferromagnetic insulating state with Jeff = 3/2 driven by the large spin-orbit coupling of Os6+ 5d2 orbitals. Moreover, the Sr3OsO6 films are epitaxially grown on SrTiO3 substrates, suggesting that they are compatible with device fabrication processes and thus promising for spintronic applications.