BioMed Central, Genes & Nutrition, 3(4), p. 173-178
DOI: 10.1007/s12263-009-0126-5
Full text: Download
Folate is a B vitamin required for one-carbon transfer reactions including methylation of cell macromolecules including DNA and synthesis of the purines adenosine and guanosine and the pyrimidine thymidine. Epidemiological evidence suggests that diets providing higher amounts of folates lower the risk of colo-rectal cancer (CRC) and these observations are supported by plausible biological mechanisms. Inadequate folate supply results in DNA damage through (a) the incorporation of uracil (in place of thymidine) into DNA and subsequent unsuccessful attempts at DNA repair and (b) aberrant patterns of DNA methylation. However, human intervention studies using relatively large doses (500-5,000 mug/day) of folic acid (a synthetic form of folate) have provided no evidence of benefit in terms of adenoma recurrence. Indeed, there is some evidence of potential harm in increased risk of prostate cancer. Possible reasons for the apparent divergence in findings from the observational and intervention studies include the use of (unphysiologically) large doses of folic acid in the intervention studies whereas smaller intakes of food folates appeared to offer "protection" against CRC in case-control and prospective cohort studies. With intakes of folic acid greater than 400 mug/day, unmetabolised folic acid appears in peripheral blood and there are suggestions that this folic acid may have adverse effects e.g. reduced cytotoxicity of Natural Killer cells. Until the benefit-risk relationship associated with mandatory fortification with folic acid has been clarified (and, in particular, the possible risk of inducing extra cases of bowel or other cancer), it would seem wise to delay further mandatory folic acid fortification.