Published in

American Physical Society, Physical Review Letters, 6(105), 2010

DOI: 10.1103/physrevlett.105.068101

Links

Tools

Export citation

Search in Google Scholar

Self-Contact and Instabilities in the Anisotropic Growth of Elastic Membranes

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We investigate the morphology of thin discs and rings growing in the circumferential direction. Recent analytical results suggest that this growth produces symmetric excess cones (e cones). We study the stability of such solutions considering self-contact and bending stress. We show that, contrary to what was assumed in previous analytical solutions, beyond a critical growth factor, no symmetric e cone solution is energetically minimal any more. Instead, we obtain skewed e cone solutions having lower energy, characterized by a skewness angle and repetitive spiral winding with increasing growth. These results are generalized to discs with varying thickness and rings with holes of different radii.