Published in

Springer Verlag, Psychopharmacology, 3(229), p. 527-538

DOI: 10.1007/s00213-013-3159-9

Links

Tools

Export citation

Search in Google Scholar

Methamphetamine-induced increases in putamen gray matter associate with inhibitory control

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

RATIONALE: Problematic drug use is associated with difficulty in exerting self-control over behaviors, and this difficulty may be a consequence of atypical morphometric characteristics that are exhibited by drug-experienced individuals. The extent to which these structural abnormalities result from drug use or reflect neurobiological risk factors that predate drug use, however, is unknown. OBJECTIVES: The purpose of this study is to determine how methamphetamine affects corticostriatal structure and how drug-induced changes relate to alterations in inhibitory control. METHODS: Structural magnetic resonance images and positron emission tomography (PET) scans, assessing dopamine D2-like receptor and transporter availability, were acquired in monkeys trained to acquire, retain, and reverse three-choice visual discrimination problems before and after exposure to an escalating dose regimen of methamphetamine (or saline, as a control). Voxel-based morphometry was used to compare changes in corticostriatal gray matter between methamphetamine- and saline-exposed monkeys. The change in gray matter before and after the dosing regimen was compared to the change in the behavioral performance and in dopaminergic markers measured with PET. RESULTS: Methamphetamine exposure, compared to saline, increased gray matter within the right putamen. These changes were positively correlated with changes in performance of methamphetamine-exposed monkeys in the reversal phase, and were negatively correlated with alterations in D2-like receptor and DAT availability. CONCLUSIONS: The results provide the first evidence that exposure to a methamphetamine dosing regimen that resembles human use alters the structural integrity of the striatum and that gray-matter abnormalities detected in human methamphetamine users are due, at least in part, to the pharmacological effects of drug experience.