Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Proteomics, 10(11), p. 2105-2114, 2011

DOI: 10.1002/pmic.201000704

Links

Tools

Export citation

Search in Google Scholar

Peptide identification quality control

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Identification of large proteomics data sets is routinely performed using sophisticated software tools called search engines. Yet despite the importance of the identification process, its configuration and execution is often performed according to established lab habits, and is mostly unsupervised by detailed quality control. In order to establish easily obtainable quality control criteria that can be broadly applied to the identification process, we here introduce several simple quality control methods. An unbiased quality control of identification parameters will be conducted using target/decoy searches providing significant improvement over identification standards. MASCOT identifications were for instance increased by 13% at a constant level of confidence. The target/decoy approach can however not be universally applied. We therefore also quality control the application of this strategy itself, providing useful and intuitive metrics for evaluating the precision and robustness of the obtained false discovery rate.