Published in

MDPI, Polymers, 2(11), p. 277, 2019

DOI: 10.3390/polym11020277

Links

Tools

Export citation

Search in Google Scholar

Polypyrrole Nanowires with Ordered Large Mesopores: Synthesis, Characterization and Applications in Supercapacitor and Lithium/Sulfur Batteries

Journal article published in 2019 by Fuxing Yin, Jun Ren, Guoyan Wu, Chengwei Zhang, Yongguang Zhang
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In this work, we report the preparation of polypyrrole nanowires with ordered large mesopores (OMPW) by a simple chemical polymerization method from dual templates synthesized by self-assembling silica nanospheres in porous anodic aluminum oxide (AAO) membrane channels. The obtained OMPW showed a large surface area (231.5 m2 g−1), high aspect ratio, and interconnected large mesopores (~23 nm). The OMPW was tested as a supercapacitor electrode and showed a specific capacitance of 453 F g−1 at 0.25 A g−1. A sulfur/OMPW (S/OMPW) cathode was fabricated via a simple solution method and a heat-treatment process for lithium/sulfur batteries (LSBs). The S/OMPW composite delivered a large discharge capacity reaching 1601 mAh g−1 at the initial cycle, retaining 1014 mAh g−1 at the 100th cycle at 0.1 C. The great electrochemical performances of the OMPW capacitor electrode and S/OMPW composite were attributed to the large specific surface areas and interconnected mesopores that could supply more active sites for the electrochemical reaction and facilitate mass transfer.