Published in

Nature Research, Scientific Reports, 1(9), 2019

DOI: 10.1038/s41598-018-38367-9

Links

Tools

Export citation

Search in Google Scholar

Structure modulated charge transfer in carbon atomic wires

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstractsp-Hybridized carbon atomic wires are appealing systems with large property tunability. In particular, their electronic properties are intimately related to length, structure, and type of functional end-groups as well as to other effects such as the intermolecular charge transfer with metal nanoparticles. Here, by a combined Raman, Surface Enhanced Raman Scattering (SERS) investigation and first principles calculations of different N,N-dimethylanilino-terminated polyynes, we suggest that, upon charge transfer interaction with silver nanoparticles, the function of sp-carbon atomic wire can change from electron donor to electron acceptor by increasing the wire length. In addition, the insertion into the wire of a strong electrophilic group (1,1,4,4-tetracyanobuta-1,3-diene-2,3-diyl) changes the electron-accepting molecular regions involved in this intermolecular charge transfer. Our results indicate that carbon atomic wires could display a tunable charge transfer between the sp-wire and the metal, and hold promise as active materials in organic optoelectronics and photovoltaics.