Dissemin is shutting down on January 1st, 2025

Published in

American Association of Immunologists, The Journal of Immunology, 12(189), p. 5694-5702, 2012

DOI: 10.4049/jimmunol.1202084

Links

Tools

Export citation

Search in Google Scholar

Regulation of Allograft Survival by Inhibitory FcγRIIb Signaling

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Fcγ receptors (FcγR) provide important immunoregulation. Targeting inhibitory FcγRIIb may therefore prolong allograft survival, but its role in transplantation has not been addressed. FcγRIIb signaling was examined in murine models of acute or chronic cardiac allograft rejection by transplanting recipients that either lacked FcγRIIb expression (FcγRIIb(-/-)) or overexpressed FcγRIIb on B cells (B cell transgenic [BTG]). Acute heart allograft rejection occurred at the same tempo in FcγRIIb(-/-) C57BL/6 (B6) recipients as wild type recipients, with similar IgG alloantibody responses. In contrast, chronic rejection of MHC class II-mismatched bm12 cardiac allografts was accelerated in FcγRIIb(-/-) mice, with development of more severe transplant arteriopathy and markedly augmented effector autoantibody production. Autoantibody production was inhibited and rejection was delayed in BTG recipients. Similarly, whereas MHC class I-mismatched B6.K(d) hearts survived indefinitely and remained disease free in B6 mice, much stronger alloantibody responses and progressive graft arteriopathy developed in FcγRIIb(-/-) recipients. Notably, FcγRIIb-mediated inhibition of B6.K(d) heart graft rejection was abrogated by increasing T cell help through transfer of additional H2.K(d)-specific CD4 T cells. Thus, inhibitory FcγRIIb signaling regulates chronic but not acute rejection, most likely because the supra-optimal helper CD4 T cell response in acute rejection overcomes FcγRIIb-mediated inhibition of the effector B cell population. Immunomodulation of FcγRIIb in clinical transplantation may hold potential for inhibiting progression of transplant arteriopathy and prolonging transplant survival.