Published in

Public Library of Science, PLoS ONE, 1(9), p. e78546, 2014

DOI: 10.1371/journal.pone.0078546

Links

Tools

Export citation

Search in Google Scholar

Whole-Genome Pathway Analysis on 132,497 Individuals Identifies Novel Gene-Sets Associated with Body Mass Index

Journal article published in 2014 by Matthew A. Simonson, Matthew B. McQueen, Matthew C. Keller ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Whole genome pathway analysis is a powerful tool for the exploration of the combined effects of gene-sets within biological pathways. This study applied Interval Based Enrichment Analysis (INRICH) to perform whole-genome pathway analysis of body-mass index (BMI). We used a discovery set composed of summary statistics from a meta-analysis of 123,865 subjects performed by the GIANT Consortium, and an independent sample of 8,632 subjects to assess replication of significant pathways. We examined SNPs within nominally significant pathways using linear mixed models to estimate their contribution to overall BMI heritability. Six pathways replicated as having significant enrichment for association after correcting for multiple testing, including the previously unknown relationships between BMI and the Reactome regulation of ornithine decarboxylase pathway, the KEGG lysosome pathway, and the Reactome stabilization of P53 pathway. Two non-overlapping sets of genes emerged from the six significant pathways. The clustering of shared genes based on previously identified protein-protein interactions listed in PubMed and OMIM supported the relatively independent biological effects of these two gene-sets. We estimate that the SNPs located in examined pathways explain ∼20% of the heritability for BMI that is tagged by common SNPs (3.35% of the 16.93% total).