Published in

MDPI, International Journal of Molecular Sciences, 3(20), p. 532, 2019

DOI: 10.3390/ijms20030532

Links

Tools

Export citation

Search in Google Scholar

Epigallocatechin Gallate Modulates Muscle Homeostasis in Type 2 Diabetes and Obesity by Targeting Energetic and Redox Pathways: A Narrative Review

Journal article published in 2019 by Ester Casanova, Josepa Salvadó, Anna Crescenti ORCID, Albert Gibert-Ramos ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Obesity is associated with the hypertrophy and hyperplasia of adipose tissue, affecting the healthy secretion profile of pro- and anti-inflammatory adipokines. Increased influx of fatty acids and inflammatory adipokines from adipose tissue can induce muscle oxidative stress and inflammation and negatively regulate myocyte metabolism. Muscle has emerged as an important mediator of homeostatic control through the consumption of energy substrates, as well as governing systemic signaling networks. In muscle, obesity is related to decreased glucose uptake, deregulation of lipid metabolism, and mitochondrial dysfunction. This review focuses on the effect of epigallocatechin-gallate (EGCG) on oxidative stress and inflammation, linked to the metabolic dysfunction of skeletal muscle in obesity and their underlying mechanisms. EGCG works by increasing the expression of antioxidant enzymes, by reversing the increase of reactive oxygen species (ROS) production in skeletal muscle and regulating mitochondria-involved autophagy. Moreover, EGCG increases muscle lipid oxidation and stimulates glucose uptake in insulin-resistant skeletal muscle. EGCG acts by modulating cell signaling including the NF-κB, AMP-activated protein kinase (AMPK), and mitogen-activated protein kinase (MAPK) signaling pathways, and through epigenetic mechanisms such as DNA methylation and histone acetylation.