Published in

European Geosciences Union, Biogeosciences Discussions, p. 1-29, 2018

DOI: 10.5194/bg-2018-439

Links

Tools

Export citation

Search in Google Scholar

Fe(II) stability in seawater

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

<p><strong>Abstract.</strong> The speciation of dissolved iron (DFe) in the ocean is widely assumed to consist exclusively of Fe(III)-ligand complexes. Yet in most aqueous environments a poorly defined fraction of DFe also exists as Fe(II). Here we deploy flow injection analysis to measure in-situ Fe(II) concentrations during a series of mesocosm/microcosm experiments in coastal environments in addition to the decay rate of this Fe(II) when moved into the dark. During 5 mesocosm/microcosm experiments in Svalbard and Patagonia, where dissolved (0.2<span class="thinspace"></span>µm) Fe and Fe(II) were quantified simultaneously, Fe(II) constituted 24&amp;ndash;65<span class="thinspace"></span>% of DFe suggesting that Fe(II) was a large fraction of the DFe pool. When this Fe(II) was allowed to decay in the dark, the vast majority of measured oxidation rate constants were retarded relative to calculated constants derived from ambient temperature, salinity, pH and dissolved O<sub>2</sub>. The oxidation rates of Fe(II) spikes added to Atlantic seawater more closely matched calculated rate constants. The difference between observed and theoretical decay rates in Svalbard and Patagonia was most pronounced at Fe(II) concentrations <<span class="thinspace"></span>2<span class="thinspace"></span>nM and attributed to a stabilising effect of cellular exudates upon Fe(II). This enhanced stability of Fe(II) under post-bloom conditions, and the existence of such a high fraction of DFe as Fe(II), challenges the assumption that DFe speciation is dominated by ligand bound-Fe(III) species.</p>