Dissemin is shutting down on January 1st, 2025

Published in

American Astronomical Society, Astrophysical Journal, 2(881), p. 153, 2019

DOI: 10.3847/1538-4357/ab3049

Links

Tools

Export citation

Search in Google Scholar

Space Telescope and Optical Reverberation Mapping Project. VIII. Time Variability of Emission and Absorption in NGC 5548 Based on Modeling the Ultraviolet Spectrum

Journal article published in 2019 by G. A. Kriss ORCID, G. De Rosa ORCID, J. Ely ORCID, B. M. Peterson ORCID, J. Kaastra, M. Mehdipour ORCID, G. J. Ferland ORCID, M. Dehghanian ORCID, S. Mathur, R. Edelson ORCID, K. T. Korista ORCID, N. Arav, A. J. Barth ORCID, M. C. Bentz ORCID, W. N. Brandt ORCID and other authors.
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract We model the ultraviolet spectra of the Seyfert 1 galaxy NGC 5548 obtained with the Hubble Space Telescope during the 6 month reverberation mapping campaign in 2014. Our model of the emission from NGC 5548 corrects for overlying absorption and deblends the individual emission lines. Using the modeled spectra, we measure the response to continuum variations for the deblended and absorption-corrected individual broad emission lines, the velocity-dependent profiles of Lyα and C iv, and the narrow and broad intrinsic absorption features. We find that the time lags for the corrected emission lines are comparable to those for the original data. The velocity-binned lag profiles of Lyα and C iv have a double-peaked structure indicative of a truncated Keplerian disk. The narrow absorption lines show a delayed response to continuum variations corresponding to recombination in gas with a density of ∼105 cm−3. The high-ionization narrow absorption lines decorrelate from continuum variations during the same period as the broad emission lines. Analyzing the response of these absorption lines during this period shows that the ionizing flux is diminished in strength relative to the far-ultraviolet continuum. The broad absorption lines associated with the X-ray obscurer decrease in strength during this same time interval. The appearance of X-ray obscuration in ∼2012 corresponds with an increase in the luminosity of NGC 5548 following an extended low state. We suggest that the obscurer is a disk wind triggered by the brightening of NGC 5548 following the decrease in size of the broad-line region during the preceding low-luminosity state.