Published in

American Chemical Society, ACS Nano, 4(9), p. 3587-3595, 2015

DOI: 10.1021/acsnano.5b00911

Links

Tools

Export citation

Search in Google Scholar

On-Demand Delivery of Single DNA Molecules Using Nanopipets.

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Understanding the behavioral properties of single molecules or larger scale populations interacting with single molecules is currently a hotly pursued topic in nanotechnology. This arises from the potential such techniques have in relation to applications such as targeted drug delivery, early stage detection of disease, and drug screening. Although label and label-free single molecule detection strategies have existed for a number of years, currently lacking are efficient methods for the controllable delivery of single molecules in aqueous environments. In this article we show both experimentally and from simulations that nanopipets in conjunction with asymmetric voltage pulses can be used for label-free detection and delivery of single molecules through the tip of a nanopipet with "on-demand" timing resolution. This was demonstrated by controllable delivery of 5 kbp and 10 kbp DNA molecules from solutions with concentrations as low as 3 pM.