Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Catalysts, 1(9), p. 87, 2019

DOI: 10.3390/catal9010087

Links

Tools

Export citation

Search in Google Scholar

Recent Insights in Transition Metal Sulfide Hydrodesulfurization Catalysts for the Production of Ultra Low Sulfur Diesel: A Short Review

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The literature from the past few years dealing with hydrodesulfurization catalysts to deeply remove the sulfur-containing compounds in fuels is reviewed in this communication. We focus on the typical transition metal sulfides (TMS) Ni/Co-promoted Mo, W-based bi- and tri-metallic catalysts for selective removal of sulfur from typical refractory compounds. This review is separated into three very specific topics of the catalysts to produce ultra-low sulfur diesel. The first issue is the supported catalysts; the second, the self-supported or unsupported catalysts and finally, a brief discussion about the theoretical studies. We also inspect some details about the effect of support, the use of organic and inorganic additives and aspects related to the preparation of unsupported catalysts. We discuss some hot topics and details of the unsupported catalyst preparation that could influence the sulfur removal capacity of specific systems. Parameters such as surface acidity, dispersion, morphological changes of the active phases, and the promotion effect are the common factors discussed in the vast majority of present-day research. We conclude from this review that hydrodesulfurization performance of TMS catalysts supported or unsupported may be improved by using new methodologies, both experimental and theoretical, to fulfill the societal needs of ultra-low sulfur fuels, which more stringent future regulations will require.