Published in

American Society for Microbiology, Molecular and Cellular Biology, 9(27), p. 3266-3281, 2007

DOI: 10.1128/mcb.01767-06

Links

Tools

Export citation

Search in Google Scholar

Functional and Physical Interactions between Yeast 14-3-3 Proteins, Acetyltransferases, and Deacetylases in Response to DNA Replication Perturbations

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

The highly conserved 14-3-3 proteins participate in many biological processes in different eukaryotes. The BMH1 and BMH2 genes encode the two functionally redundant Saccharomyces cerevisiae 14-3-3 isoforms. In this work we provide evidence that defective 14-3-3 functions not only impair the ability of yeast cells to sustain DNA replication in the presence of sublethal concentrations of methyl methanesulfonate (MMS) or hydroxyurea (HU) but also cause S-phase checkpoint hyperactivation. Inactivation of the catalytic subunit of the histone acetyltransferase NuA4 or of its interactor Yng2, besides leading to S-phase defects and persistent checkpoint activation in the presence of genotoxic agents, is lethal for bmh mutants. Conversely, the lack of the histone deacetylase subunit Rpd3 or Sin3 partially suppresses the hypersensitivity to HU of bmh mutants and restores their ability to complete DNA replication in the presence of MMS or HU. These data strongly suggest that reduced acetyltransferase functionality might account for the S-phase defects of bmh mutants in the presence of genotoxic agents. Consistent with a role of 14-3-3 proteins in acetyltransferase and deacetylase regulation, we find that acetylation of H3 and H4 histone tails is reduced in temperature-sensitive bmh mutants shifted to the restrictive temperature. Moreover, Bmh proteins physically interact, directly or indirectly, with the Esa1 acetyltransferase throughout the cell cycle and with the Rpd3 deacetylase specifically during unperturbed S phase and after HU treatment. Taken together, our results highlight a novel role for 14-3-3 proteins in the regulation of histone acetyltransferase and deacetylase functions in the response to replicative stress.