Published in

MDPI, International Journal of Molecular Sciences, 2(20), p. 286, 2019

DOI: 10.3390/ijms20020286

Links

Tools

Export citation

Search in Google Scholar

Molecular Mechanisms of Leucine Zipper EF-Hand Containing Transmembrane Protein-1 Function in Health and Disease

Journal article published in 2019 by Qi-Tong Lin ORCID, Peter Stathopulos ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Mitochondrial calcium (Ca2+) uptake shapes cytosolic Ca2+ signals involved in countless cellular processes and more directly regulates numerous mitochondrial functions including ATP production, autophagy and apoptosis. Given the intimate link to both life and death processes, it is imperative that mitochondria tightly regulate intramitochondrial Ca2+ levels with a high degree of precision. Among the Ca2+ handling tools of mitochondria, the leucine zipper EF-hand containing transmembrane protein-1 (LETM1) is a transporter protein localized to the inner mitochondrial membrane shown to constitute a Ca2+/H+ exchanger activity. The significance of LETM1 to mitochondrial Ca2+ regulation is evident from Wolf-Hirschhorn syndrome patients that harbor a haplodeficiency in LETM1 expression, leading to dysfunctional mitochondrial Ca2+ handling and from numerous types of cancer cells that show an upregulation of LETM1 expression. Despite the significance of LETM1 to cell physiology and pathophysiology, the molecular mechanisms of LETM1 function remain poorly defined. In this review, we aim to provide an overview of the current understanding of LETM1 structure and function and pinpoint the knowledge gaps that need to be filled in order to unravel the underlying mechanistic basis for LETM1 function.