Links

Tools

Export citation

Search in Google Scholar

Directed phenotype switching as an effective antimelanoma strategy.

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Therapeutic resistance in melanoma and other cancers arises via irreversible genetic, and dynamic phenotypic, heterogeneity. Here, we use directed phenotype switching in melanoma to sensitize melanoma cells to lineage-specific therapy. We show that methotrexate (MTX) induces microphthalmia-associated transcription factor (MITF) expression to inhibit invasiveness and promote differentiation-associated expression of the melanocyte-specific Tyrosinase gene. Consequently, MTX sensitizes melanomas to a tyrosinase-processed antifolate prodrug 3-O-(3,4,5-trimethoxybenzoyl)-(-)-epicatechin (TMECG), that inhibits the essential enzyme DHFR with high affinity. The combination of MTX and TMECG leads to depletion of thymidine pools, double-strand DNA breaks, and highly efficient E2F1-mediated apoptosis in culture and in vivo. Importantly, this drug combination delivers an effective and tissue-restricted antimelanoma therapy in vitro and in vivo irrespective of BRAF, MEK, or p53 status.