Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Coatings, 12(8), p. 462, 2018

DOI: 10.3390/coatings8120462

Links

Tools

Export citation

Search in Google Scholar

Transparent Amorphous Oxide Semiconductor as Excellent Thermoelectric Materials

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

It is demonstrated that transparent amorphous oxide semiconductors (TAOS) can be excellent thermoelectric (TE) materials, since their thermal conductivity (κ) through a randomly disordered structure is quite low, while their electrical conductivity and carrier mobility (μ) are high, compared to crystalline semiconductors through the first-principles calculations and the various measurements for the amorphous In−Zn−O (a-IZO) thin film. The calculated phonon dispersion in a-IZO shows non-linear phonon instability, which can prevent the transport of phonon. The a-IZO was estimated to have poor κ and high electrical conductivity compared to crystalline In2O3:Sn (c-ITO). These properties show that the TAOS can be an excellent thin-film transparent TE material. It is suggested that the TAOS can be employed to mitigate the heating problem in transparent display devices.