Published in

MDPI, Energies, 2(12), p. 219, 2019

DOI: 10.3390/en12020219

Links

Tools

Export citation

Search in Google Scholar

Direct Driven Hydraulic Drive: Effect of Oil on Efficiency in Sub-Zero Conditions

Journal article published in 2019 by Tatiana Minav ORCID, Jani Heikkinen ORCID, Thomas Schimmel, Matti Pietola
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Direct driven hydraulic drives (DDH) have the advantages of compact high power density in hydraulic systems and flexible control of electric motors. These advantages can benefit non-road mobile machinery (NRMM) applications. However, maintaining high efficiency while working in sub-zero conditions with NRMM is challenging. Therefore, this paper investigates the effect of hydraulic oil on the efficiency of a DDH in a cold environment for an NRMM application. In the DDH setup, the speed and position control of a double-acting cylinder was implemented directly with an electric motor drive in a closed-loop system without the conventional control valves. Efficiency measurements of the DDH setup with two oils (conventional multi-grade and high-performance) were conducted under different operating conditions (speed and payload) and environmental conditions (temperature in °C). The paper provides an evaluation of the electro-hydraulic system and a discussion on the usage of hydraulic oil by non-road mobile working machines in sub-zero conditions. An experimental investigation demonstrated an improvement in efficiency of 5%-unit at 22 °C, from 2%-unit to 5%-unit at 3 °C, and of almost a 10%-unit at temperatures below zero (−10 °C) by changing oil.