Published in

Oxford University Press, Journal of Pharmacy and Pharmacology, 2(71), p. 260-269, 2018

DOI: 10.1111/jphp.13029

Links

Tools

Export citation

Search in Google Scholar

Antiplasmodial activity and cytotoxicity, isolation of active alkaloids, and dereplication of Xylopia sericea leaves ethanol extract by UPLC-DAD-ESI-MS/MS

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Objectives To assess the antiplasmodial activity of the ethanol extract of Xylopia sericea leaves, Annonaceae, often associated with antimalarial use and to perform a bioguided isolation of active compounds. Methods Dereplication of ethanol extract by the UPLC-DAD-ESI-MS/MS technique allowed the identification of the major constituents, isolation and identification of alkaloids. The antiplasmodial and cytotoxic activity of the extract, fractions and isolated compounds was evaluated against the chloroquine-resistant W2 strain Plasmodium falciparum and HepG2 cells, respectively. Key findings Ethanol extract showed high reduction of parasitemia as well as moderate cytotoxicity (86.5 ± 3.0% growth inhibition at 50 μg/ml and CC50 72.1 ± 5.1 μg/ml, respectively). A total of eight flavonoids were identified, and two aporphine alkaloids, anonaine and O-methylmoschatoline, were isolated. Anonaine disclosed significant antiplasmodial effect and moderate cytotoxicity (IC50 23.2 ± 2.7 μg/ml, CC50 38.3 ± 2.3 μg/ml, SI 1.6) while O-methylmoschatoline was not active against P. falciparum and showed a low cytotoxicity (33.5 ± 1.9% growth inhibition at 50 μg/ml, CC50 274.4 ± 0.5 μg/ml). Conclusions Characterization of Xylopia sericea leaves ethanol extract by UPLC-DAD-ESI-MS/MS as well as its antiplasmodial activity and the occurrence of anonaine and O-methylmoschatoline in this Xylopia species are reported by the first time.