Dissemin is shutting down on January 1st, 2025

Links

Tools

Export citation

Search in Google Scholar

Directional integration on unstructured meshes via supermesh construction

Journal article published in 2012 by J. R. Maddison, Pe E. Farrell ORCID
This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Unstructured meshes are in widespread use throughout computational physics, but calculating diagnostics of simulations on such meshes can be challenging. For example, in geophysical fluid dynamics, it is frequently desirable to compute directional integrals such as vertical integrals and zonal averages; however, it is difficult to compute these on meshes with no inherent spatial structure. This is widely regarded as an obstacle to the adoption of unstructured mesh numerical modelling in this field. In this paper, we describe an algorithm by which one can exactly compute such directional integrals on arbitrarily unstructured meshes. This is achieved via the solution of a problem of computational geometry, constructing the supermesh of two meshes. We demonstrate the utility of this approach by applying it to a classical geophysical fluid dynamics system: the thermally driven rotating annulus. This addresses an important objection to the more widespread use of unstructured mesh modelling. © 2012 Elsevier Inc.