Published in

Society of Exploration Geophysicists, Geophysics, 3(74), p. D57-D63, 2009

DOI: 10.1190/1.3096616

Links

Tools

Export citation

Search in Google Scholar

A simplified model of effective elasticity for anisotropic shales

Journal article published in 2009 by Audrey Ougier-Simonin, Joël Sarout, Yves Gueguen
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A simple method to deal with cracklike pores in anisotropic matrix rock such as shales enhances analytical models and their applications. Actually, clayrocks (shales, in particular) are the dominant clastic component in sedimentary basins, representing about two-thirds of all sedimentary rocks. Shales are usually assumed to be transversely isotropic (TI) media. They are known to be highly anisotropic because of (1) intrinsic elastic anisotropy of the solid phase (matrix) forming the rock (more or less ordered clay layers) and (2) anisotropy induced by the presence of cracklike pores. We focus on this second component of anisotropy. Current analytical models deal with it, but they are complex and are restricted in the case of matrix TI symmetry to cracks lying in the symmetry plane. We simplify such models within a reasonably good approximation and develop an analysis scheme in which cracklike pore effects are calculated in an equivalent isotropic matrix. This simplifies the theoretical approach and potentially broadens its application to any crack and/or pore orientation, e.g., damaged shale with horizontal and vertical (perpendicular to the bedding plane) cracks. A high-pressure confinement test provides experimental data for checking the proposed tool against a reference model in the case of cracklike pores lying in the bedding plane. The results (in terms of Thomsen parameters) are consistent with results from large-scale field data.