Published in

MDPI, Materials, 1(12), p. 83, 2018

DOI: 10.3390/ma12010083

Links

Tools

Export citation

Search in Google Scholar

Efficient Catalytic Production of Biodiesel with Acid-Base Bifunctional Rod-Like Ca-B Oxides by the Sol-Gel Approach

Journal article published in 2018 by Anping Wang, Hu Li, Heng Zhang ORCID, Hu Pan, Song Yang ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The search for acid-base bifunctional catalysts has become a hot topic in the preparation of biofuels from renewable resources. In the present work, a series of novel acid-base bifunctional metal-boron catalysts were successfully prepared by a sol-gel method and characterized by XRD, IR, SEM, TEM, TGA, BET, and TPD. Among those bifunctional solid materials, the Ca-B(700) catalyst had the highest density of both acid and base sites and showed excellent catalytic performance in the production of biodiesel from nonedible oils with high acid value. Under the optimal reaction conditions of 20/1 methanol/oil mole ratio and 4 wt % catalyst dosage at 105 °C for 2 h, a high biodiesel yield of 96.0% could be obtained from Jatropha curcas oil in one-pot. In addition, Ca-B(700) was also applicable to producing biodiesel from Firmiana platanifolia L.f. oil in a relatively low acid value, with an almost quantitative yield (98.5%) at 65 °C after 2 h. The Ca-B(700) catalyst had good stability and reusability, which is a promising acid-base bifunctional catalytic material for the preparation of biodiesel.