Published in

American Chemical Society, Journal of Medicinal Chemistry, 3(54), p. 782-787, 2011

DOI: 10.1021/jm101018r

Links

Tools

Export citation

Search in Google Scholar

Chemical Re-Engineering of Chlorotoxin Improves Bioconjugation Properties for Tumor Imaging and Targeted Therapy

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Bioconjugates composed of chlorotoxin and near-infrared fluorescent (NIRF) moieties are being advanced toward human clinical trials as intraoperative imaging agents that will enable surgeons to visualize small foci of cancer. In previous studies, the NIRF molecules were conjugated to chlorotoxin, which results in a mixture of mono-, di-, and trilabeled peptide. Here we report a new chemical entity that bound only a single NIRF molecule. The lysines at positions 15 and 23 were substituted with either alanine or arginine, which resulted in only monolabeled peptide that was functionally equivalent to native chlorotoxin/Cy5.5. We also analyzed the serum stability and serum half-life of cyclized chlorotoxin, which showed an 11 h serum half-life and resulted in a monolabeled product. Based on these data, we propose to advance a monolabeled chlorotoxin to human clinical trials.