Published in

Eurochem Publishing, European Journal of Chemistry, 3(10), p. 189-194, 2019

DOI: 10.5155/eurjchem.10.3.189-194.1903

Links

Tools

Export citation

Search in Google Scholar

Crystal structure and Hirshfeld surface analysis of N-(2-(N-methylsulfamoyl)phenyl)formamide: Degradation product of 2-methyl-2H-1,2,4-benzothiadiazine 1,1-dioxide

Journal article published in 2019 by Koffi Senam Etse ORCID, Guillermo Zaragoza ORCID, Bernard Pirotte ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The hydrolysis of 2-methyl-2H-1,2,4-benzothiadiazine 1,1-dioxide (2) during crystallization under humidity (85 %) conditions, lead to N-(2-(N-methylsulfamoyl)phenyl)formamide as second step hydrolysis product, identified in the proposed degradation mechanism. Crystal of N-(2-(N-methylsulfamoyl)phenyl)formamide C8H10N2O3S (4), was obtained and characterized. The molecular structure determination was carried out with MoKα X-ray and data measured at 100 K. The compound 4 crystallizes in triclinic P͞1 space group with unit cell parameters a = 4.8465(4) Å, b = 8.1942(9) Å, c = 11.8686(13) Å, α = 77.080(4)°, β = 82.069(4)°, γ = 80.648(4)°, V = 450.76 (8) Å3 and Z = 2. The crystal structure is stabilized by intramolecular N-H···O and intermolecular C-H···O and N-H···O hydrogen bonds that extended as infinite 1D chain along [100]. Stabilization is also ensured by oxygen-π stacking interaction between the aromatic ring and oxygen of the sulfonamide group. The analysis of intermolecular interactions through the mapping of dnorm and shape-index revel that the most significant contributions to the Hirshfeld surface 40.6 and 33.9% are from H···H and O···H contacts, respectively.