Published in

Nature Research, npj Quantum Materials, 1(4), 2019

DOI: 10.1038/s41535-019-0155-2

Links

Tools

Export citation

Search in Google Scholar

Expansion of the spin cycloid in multiferroic BiFeO3 thin films

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractUnderstanding and manipulating complex spin texture in multiferroics can offer new perspectives for electric field-controlled spin manipulation. In BiFeO3, a well-known room temperature multiferroic, the competition between various exchange interactions manifests itself as non-collinear spin order, i.e., an incommensurate spin cycloid with period 64 nm. We report on the stability and systematic expansion of the length of the spin cycloid in (110)-oriented epitaxial Co-doped BiFeO3 thin films. Neutron diffraction shows (i) this cycloid, despite its partly out-of-plane canted propagation vector, can be stabilized in thinnest films; (ii) the cycloid length expands significantly with decreasing film thickness; (iii) theory confirms a unique [$11\bar 2$ 11 2 ¯ ] cycloid propagation direction; and (iv) in the temperature dependence the cycloid length expands significantly close to TN. These observations are supported by Monte Carlo simulations based on a first-principles effective Hamiltonian method. Our results therefore offer new opportunities for nanoscale magnonic devices based on complex spin textures.