Published in

Trans Tech Publications, Materials Science Forum, (941), p. 967-975, 2018

DOI: 10.4028/www.scientific.net/msf.941.967

Links

Tools

Export citation

Search in Google Scholar

Connecting the Microstructure Stability of Ni Based Superalloys to their Chemical Compositions

Journal article published in 2018 by Hao Yu, Wei Xu ORCID, Sybrand van der Zwaag
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The degradation of creep resistance in Nickel-based single crystal superalloys is essentially ascribed to their microstructure evolution. Yet there is a lack of work that manages to simulate the effect of alloying element concentrations on microstructure degradation. In this research, a computational model is developed to connect the rafting kinetics of Ni superalloys with their chemical composition, by combining thermodynamics calculation and an energy-based microstructure model. The isotropic coarsening rate and γ/γ misfit stresses have been selected as composition related parameter, and the effect of service temperature, time and applied stress are also taken into consideration to simulate the evolutions of microstructure parameters during creep process. The different generations of commercial Ni superalloys are selected and their chemical compositions are calculated based on this model. The simulated microstructure parameters are validated by the results from experimental results and the existing analytical model. The capability of the model in predicting the microstructure characteristics may provide instructional thought in developing a novel computational guided design approach in Ni superalloys.