Dissemin is shutting down on January 1st, 2025

Published in

MDPI, International Journal of Molecular Sciences, 1(20), p. 57, 2018

DOI: 10.3390/ijms20010057

Links

Tools

Export citation

Search in Google Scholar

NLRP3-Dependent and -Independent Processing of Interleukin (IL)-1β in Active Ulcerative Colitis

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

A contributing factor in the development of ulcerative colitis (UC) and Crohn’s disease (CD) is the disruption of innate and adaptive signaling pathways due to aberrant cytokine production. The cytokine, interleukin (IL)-1β, is highly inflammatory and its production is tightly regulated through transcriptional control and both inflammasome-dependent and inflammasome- independent proteolytic cleavage. In this study, qRT-PCR, immunohistochemistry, immunofluorescence confocal microscopy were used to (1) assess the mRNA expression of NLRP3, IL-1β, CASP1 and ASC in paired biopsies from UC and CD patient, and (2) the colonic localization and spatial relationship of NLRP3 and IL-1β in active and quiescent disease. NLRP3 and IL-1β were found to be upregulated in active UC and CD. During active disease, IL-1β was localized to the infiltrate of lamina propria immune cells, which contrasts with the near-exclusive epithelial cell layer expression during non-inflammatory conditions. In active disease, NLRP3 was consistently expressed within the neutrophils and other immune cells of the lamina propria and absent from the epithelial cell layer. The disparity in spatial localization of IL-1β and NLRP3, observed only in active UC, which is characterized by a neutrophil-dominated lamina propria cell population, implies inflammasome-independent processing of IL-1β. Consistent with other acute inflammatory conditions, these results suggest that blocking both caspase-1 and neutrophil-derived serine proteases may provide an additional therapeutic option for treating active UC.