Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Electronics, 12(7), p. 384, 2018

DOI: 10.3390/electronics7120384

Links

Tools

Export citation

Search in Google Scholar

Artificial Neural Networks to Assess Emotional States from Brain-Computer Interface

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Estimation of human emotions plays an important role in the development of modern brain-computer interface devices like the Emotiv EPOC+ headset. In this paper, we present an experiment to assess the classification accuracy of the emotional states provided by the headset’s application programming interface (API). In this experiment, several sets of images selected from the International Affective Picture System (IAPS) dataset are shown to sixteen participants wearing the headset. Firstly, the participants’ responses in form of a self-assessment manikin questionnaire to the emotions elicited are compared with the validated IAPS predefined valence, arousal and dominance values. After statistically demonstrating that the responses are highly correlated with the IAPS values, several artificial neural networks (ANNs) based on the multilayer perceptron architecture are tested to calculate the classification accuracy of the Emotiv EPOC+ API emotional outcomes. The best result is obtained for an ANN configuration with three hidden layers, and 30, 8 and 3 neurons for layers 1, 2 and 3, respectively. This configuration offers 85% classification accuracy, which means that the emotional estimation provided by the headset can be used with high confidence in real-time applications that are based on users’ emotional states. Thus the emotional states given by the headset’s API may be used with no further processing of the electroencephalogram signals acquired from the scalp, which would add a level of difficulty.