Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Membranes, 4(8), p. 132, 2018

DOI: 10.3390/membranes8040132

Links

Tools

Export citation

Search in Google Scholar

Temperature and Pressure Dependence of Gas Permeation in a Microporous Tröger’s Base Polymer

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Gas transport properties of PIM-EA(H2)-TB, a microporous Tröger’s base polymer, were systematically studied over a range of pressure and temperature. Permeability coefficients of pure CO2, N2, CH4 and H2 were determined for upstream pressures up to 20 bar and temperatures up to 200 °C. PIM-EA(H2)-TB exhibited high permeability coefficients in absence of plasticization phenomena. The permeability coefficient of N2, CH4 and H2 increased with increasing temperature while CO2 permeability decreased with increasing temperature as expected for a glassy polymer. The diffusion and solubility coefficients were also analysed individually and compared with other polymers of intrinsic microporosity. From these results, the activation energies of permeation, diffusion and sorption enthalpies were calculated using an Arrhenius equation.