Elsevier, Immunity, 2(35), p. 194-207, 2011
DOI: 10.1016/j.immuni.2011.05.016
Elsevier, International Journal of Infectious Diseases, (16), p. e59-e60, 2012
DOI: 10.1016/j.ijid.2012.05.148
Full text: Download
Although Toll-like receptor 9 (TLR9) has been implicated in regulating cytokine and type I interferon (IFN) production during malaria in humans and mice, the high AT content of the Plasmodium falciparum genome prompted us to examine the possibility that malarial DNA triggered TLR9-independent DNA sensing pathways. Over 6000 ATTTTTAC (“AT-rich”) motifs are present in the genome of P. falciparum, which we show here potently induce type I IFNs. Parasite DNA, parasitized erythrocytes and oligonucleotides containing the AT-r motif induce type I IFNs via a pathway that did not involve previously described sensors including TLR9, DAI, RNA polymerase-III or IFI16/p204. Rather, AT-rich DNA sensing involved an unknown receptor that coupled to STING, TBK1 and IRF3-IRF7 signaling pathway. Mice lacking both IRF3 and IRF7, the kinase TBK1 or the type I IFN receptor were resistant to otherwise lethal cerebral malaria. Collectively, these observations implicate AT-rich DNA sensing via STING, TBK1 and IRF3-IRF7 in P. falciparum malaria.