Links

Tools

Export citation

Search in Google Scholar

Asynchronous responses of East Asian and Indian summer monsoons to mountain uplift shown by regional climate modelling experiments

Journal article published in 2012 by Hui Tang ORCID, Arne Micheels, Jussi T. Eronen, Bodo Ahrens ORCID, Mikael Fortelius ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

It has been demonstrated in climate models that both the Indian and East Asian summer monsoons (ISM and EASM) are strengthened by the uplift of the entire Asian orography or Tibetan Plateau (TP) (i.e. bulk mountain uplift). Such an effect is widely perceived as the major mechanism contributing to the evolution of Asian summer monsoons in the Neogene. However, geological evidence suggests more diachronous growth of the Asian orography (i.e. regional mountain uplift) than bulk mountain uplift. This demands a re-evaluation of the relation between mountain uplift and the Asian monsoon in the geological periods. In this study, sensitivity experiments considering the diachronous growth of different parts of the Asian orography are performed using the regional climate model COSMO-CLM to investigate their effects on the Asian summer monsoons. The results show that, different from the bulk mountain uplift, the regional mountain uplift can lead to an asynchronous development of the ISM and EASM. While the ISM is primarily intensified by the thermal insulation (mechanical blocking) effect of the southern TP (Zagros Mountains), the EASM is mainly enhanced by the surface sensible heating of the central, northern and eastern TP. Such elevated surface heating can induce a low-level cyclonic anomaly around the TP that reduces the ISM by suppressing the lower tropospheric monsoon vorticity, but promotes the EASM by strengthening the warm advection from the south of the TP that sustains the monsoon convection. Our findings provide new insights to the evolution of the Asian summer monsoons and their interaction with the tectonic changes in the Neogene.