Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press, The Journal of Clinical Endocrinology & Metabolism, 3(105), p. e520-e531, 2020

DOI: 10.1210/clinem/dgaa005

Links

Tools

Export citation

Search in Google Scholar

Fibroblast Growth Factor-21, Leptin and Adiponectin Responses to Acute Cold-induced Brown Adipose Tissue Activation

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Abstract Background Adipocyte-derived hormones play a role in insulin sensitivity and energy homeostasis. However, the relationship between circulating fibroblast growth factor 21 (FGF21), adipocytokines and cold-induced supraclavicular brown adipose tissue (sBAT) activation is underexplored. Objective Our study aimed to investigate the relationships between cold-induced sBAT activity and plasma FGF21 and adipocytokines levels in healthy adults. Design Nineteen healthy participants underwent energy expenditure (EE) and supraclavicular infrared thermography (IRT) within a whole-body calorimeter at baseline and at 2 hours post-cold exposure. 18F-fluorodeoxyglucose (18F-FDG) positron-emission tomography/magnetic resonance (PET/MR) imaging scans were performed post-cold exposure. PET sBAT mean standardized uptake value (SUV mean), MR supraclavicular fat fraction (sFF), anterior supraclavicular maximum temperature (Tscv max) and EE change (%) after cold exposure were used to quantify sBAT activity. Main Outcome Measures Plasma FGF21, leptin, adiponectin, and tumor necrosis factor alpha (TNFα) at baseline and 2 hours post-cold exposure. Body composition at baseline by dual-energy x-ray absorptiometry (DXA). Results Plasma FGF21 and adiponectin levels were significantly reduced after cold exposure in BAT-positive subjects but not in BAT-negative subjects. Leptin concentration was significantly reduced in both BAT-positive and BAT-negative participants after cold exposure. Adiponectin concentration at baseline was positively strongly associated with sBAT PET SUV mean (coefficient, 3269; P = 0.01) and IRT Tscv max (coefficient, 6801; P = 0.03), and inversely correlated with MR sFF (coefficient, −404; P = 0.02) after cold exposure in BAT-positive subjects but not in BAT-negative subjects. Conclusion Higher adiponectin concentrations at baseline indicate a greater cold-induced sBAT activity, which may be a novel predictor for sBAT activity in healthy BAT-positive adults. Highlights A higher adiponectin concentration at baseline was associated with higher cold-induced supraclavicular BAT PET SUV mean and IRT Tscv max, and lower MR supraclavicular FF. Adiponectin levels maybe a novel predictor for cold-induced sBAT activity.