Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 19(105), p. 6813-6818, 2008

DOI: 10.1073/pnas.0800712105

Links

Tools

Export citation

Search in Google Scholar

Platinum-based inhibitors of amyloid-  as therapeutic agents for Alzheimer's disease

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Amelyoid-β peptide (Aβ) is a major causative agent responsible for Alzheimer's disease (AD). Aβ contains a high affinity metal binding site that modulates peptide aggregation and toxicity. Therefore, identifying molecules targeting this site represents a valid therapeutic strategy. To test this hypothesis, a range of L-PtCl 2 (L = 1,10-phenanthroline derivatives) complexes were examined and shown to bind to Aβ, inhibit neurotoxicity and rescue Aβ-induced synaptotoxicity in mouse hippocampal slices. Coordination of the complexes to Aβ altered the chemical properties of the peptide inhibiting amyloid formation and the generation of reactive oxygen species. In comparison, the classic anticancer drug cisplatin did not affect any of the biochemical and cellular effects of Aβ. This implies that the planar aromatic 1,10-phenanthroline ligands L confer some specificity for Aβ onto the platinum complexes. The potent effect of the L-PtCl 2 complexes identifies this class of compounds as therapeutic agents for AD.