Published in

Springer, BioControl, 3(57), p. 397-404, 2011

DOI: 10.1007/s10526-011-9409-z

Links

Tools

Export citation

Search in Google Scholar

Mitochondrial DNA diversity of Cleruchoides noackae (Hymenoptera: Mymaridae): a potential biological control agent for Thaumastocoris peregrinus (Hemiptera: Thaumastocoridae)

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Thaumastocoris peregrinus Carpintero and Dellapé (Hemiptera: Thaumastocoridae) is a native Australian Eucalyptus sap-feeding insect that has become invasive and seriously damaging to commercially grown Eucalyptus in the Southern Hemisphere. Cleruchoides noackae Lin and Huber (Hymenoptera: Mymaridae) was recently discovered as an egg parasitoid of the Thaumastocoridae in Australia. Mitochondrial DNA (mtDNA; cytochrome c oxidase subunit I, COI) sequence diversity amongst 104 individuals from these native C. noackae populations revealed 24 sequence haplotypes. The COI haplotypes of individuals collected from the Sydney and Southeast Queensland clustered in distinct groups, indicating limited spread of the insect between the regions. Individuals collected from Perth in Western Australia were represented by four COI haplotypes. Although this population is geographically more isolated from other populations, two COI haplotypes were identical to haplotypes found in the Sydney region. The results suggest that C. noackae has recently been introduced into Perth, possibly from the Sydney area. The high mtDNA diversity and limited spread that is suggested for C. noackae is in contrast to the lack of geographic associated mtDNA diversity and extensive spread of T. peregrinus. If implemented as a biological control agent, this factor will need to be considered in collecting and releasing C. noackae.