Published in

International Union of Crystallography, Journal of Applied Crystallography, 6(51), p. 1706-1714, 2018

DOI: 10.1107/s1600576718014474

Links

Tools

Export citation

Search in Google Scholar

Characterization of anisotropic pores and spatially oriented precipitates in sintered Mo-base alloys using small-angle neutron scattering

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Small-angle neutron scattering (SANS) is a powerful method for the characterization of materials in the mesoscopic size range. For example, the method can be used to investigate the precipitation mechanisms in powder metallurgically processed materials. As a result of the processing route, the alloy matrix is usually heavily textured. If precipitates have an orientation relationship to the alloy matrix, they can produce an anisotropic scattering pattern showing streaks. The scattering is superimposed by a background with ellipsoidal shape, originating from deformed large-scale structures. The evaluation of such data quickly becomes elaborate and a quantitative analysis of precipitation is difficult. The present work reports a method for treating the anisotropic scattering from such samples. A systematic study of the ellipsoidal background reveals that it originates from uniaxially deformed sinter pores. Irrespective of the degree of deformation during the processing route, SANS shows that sinter pores remain present in the matrix, and their morphology and relative volume fractions are determined. Consequently, their scattering signal can be subtracted to reveal the scattering from aligned precipitates. The method is demonstrated on powder metallurgically produced pure Mo and an Mo–Hf–C alloy.