Published in

Hindawi, Complexity, (2018), p. 1-14, 2018

DOI: 10.1155/2018/7837696

Links

Tools

Export citation

Search in Google Scholar

MOFSRank: A Multiobjective Evolutionary Algorithm for Feature Selection in Learning to Rank

Journal article published in 2018 by Fan Cheng ORCID, Wei Guo ORCID, Xingyi Zhang ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Orange circle
Preprint: archiving restricted
Orange circle
Postprint: archiving restricted
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Learning to rank has attracted increasing interest in the past decade, due to its wide applications in the areas like document retrieval and collaborative filtering. Feature selection for learning to rank is to select a small number of features from the original large set of features which can ensure a high ranking accuracy, since in many real ranking applications many features are redundant or even irrelevant. To this end, in this paper, a multiobjective evolutionary algorithm, termed MOFSRank, is proposed for feature selection in learning to rank which consists of three components. First, an instance selection strategy is suggested to choose the informative instances from the ranking training set, by which the redundant data is removed and the training efficiency is enhanced. Then on the selected instance subsets, a multiobjective feature selection algorithm with an adaptive mutation is developed, where good feature subsets are obtained by selecting the features with high ranking accuracy and low redundancy. Finally, an ensemble strategy is also designed in MOFSRank, which utilizes these obtained feature subsets to produce a set of better features. Experimental results on benchmark data sets confirm the advantage of the proposed method in comparison with the state-of-the-arts.