Published in

MDPI, Sensors, 12(18), p. 4183, 2018

DOI: 10.3390/s18124183

Links

Tools

Export citation

Search in Google Scholar

Reconstruction of Cylindrical Surfaces Using Digital Image Correlation

Journal article published in 2018 by Adilson Berveglieri ORCID, Antonio Tommaselli ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

A technique for the reconstruction of cylindrical surfaces using optical images with an extension of least squares matching is presented. This technique is based on stereo-image acquisition of a cylindrical object, and it involves displacing the camera following the object length. The basic concept behind this technique is that variations in the camera viewpoint over a cylindrical object produce perspective effects similar to a conic section in an image sequence. Such parallax changes are continuous and can be modelled by a second-order function, which is combined with an adaptive least squares matching (ALSM) for the 3D object reconstruction. Using this concept, a photogrammetric intersection with only two image patches can be used to model a cylindrical object with high accuracy. Experiments were conducted with a cylinder on a panel with coded targets to assess the 3D reconstruction accuracy. The accuracy assessment was based on a comparison between the estimated diameter and the diameter directly measured over the cylinder. The difference between the diameters indicated an accuracy of 1/10 mm, and the cylindrical surface was entirely reconstructed.