Dissemin is shutting down on January 1st, 2025

Published in

Springer Verlag, Oecologia, 3(136), p. 336-346

DOI: 10.1007/s00442-003-1283-7

Links

Tools

Export citation

Search in Google Scholar

How Daphnia copes with excess carbon in its food

Journal article published in 2003 by Fran�ois Darchambeau, Per J. Faer�vig, Dag O. Hessen ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Animals that maintain near homeostatic elemental ratios may get rid of excess ingested elements from their food in different ways. C regulation was studied in juveniles of Daphnia magna feeding on two Selenastrum capricornutum cultures contrasting in P content (400 and 80 C:P atomic ratios). Both cultures were labelled with (14)C in order to measure Daphnia ingestion and assimilation rates. No significant difference in ingestion rates was observed between P-low and P-rich food, whereas the net assimilation of (14)C was higher in the treatment with P-rich algae. Some Daphnia were also homogeneously labelled over 5 days on radioactive algae to estimate respiration rates and excretion rates of dissolved organic C (DOC). The respiration rate for Daphnia fed with high C:P algae (38.7% of body C day(-1)) was significantly higher than for those feeding on low C:P algae (25.3% of body C day(-1)). The DOC excretion rate was also higher when animals were fed on P-low algae (13.4% of body C day(-1)) than on P-rich algae (5.7% of body C day(-1)). When corrected for respiratory losses, total assimilation of C did not differ significantly between treatments (around 60% of body C day(-1)). Judging from these experiments, D. magna can maintain its stoichiometric balance when feeding on unbalanced diets (high C:P) primarily by disposing of excess dietary C via respiration and excretion of DOC.