Published in

Elsevier, The American Journal of Pathology, 1(171), p. 326-337, 2007

DOI: 10.2353/ajpath.2007.061196

Links

Tools

Export citation

Search in Google Scholar

Distinctive Expression of Chemokines and Transforming Growth Factor-β Signaling in Human Arterial Endothelium during Atherosclerosis

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Knowledge about the in vivo role of endothelium in chronic human atherosclerosis has mostly been derived by insights from mouse models. Therefore, we set out to establish by microarray analyses the gene expression profiles of endothelium from human large arteries, as isolated by laser microbeam microdissection, having focal atherosclerosis of the early or the advanced stage. Within individual arteries, the endothelial transcriptomes of the lesional and unaffected sides were compared pairwise, thus limiting genetic and environmental confounders. Specific endothelial signature gene sets were identified with changed expression levels in either early (n = 718) or advanced atherosclerosis (n = 403), relative to their paired plaque-free controls. Gene set enrichment analysis identified distinct sets of chemokines and differential enrichments of nuclear factor-kappaB-, p53-, and transforming growth factor-beta-related genes in advanced plaques. Immunohistochemistry validated the discriminative value of corresponding endothelial protein expression between early (fractalkine/CX3CL1, IP10/CCL10, TBX18) or advanced (BAX, NFKB2) stages of atherosclerosis and versus their plaque-free controls. The functional involvement of transforming growth factor-beta signaling in directing its downstream gene repertoire was substantiated by a consistent detection of activated SMAD2 in advanced lesions. Thus, we identified truly common, local molecular denominators of pathological changes to vascular endothelium, with a marked distinction of endothelial phenotype between early and advanced plaques.