Published in

MDPI, Molecules, 11(23), p. 2961, 2018

DOI: 10.3390/molecules23112961

Links

Tools

Export citation

Search in Google Scholar

From Quinoxaline, Pyrido[2,3-b]pyrazine and Pyrido[3,4-b]pyrazine to Pyrazino-Fused Carbazoles and Carbolines

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

2,3-Diphenylated quinoxaline, pyrido[2,3-b]pyrazine and 8-bromopyrido[3,4-b]pyrazine were halogenated in deprotometalation-trapping reactions using mixed 2,2,6,6-tetramethyl piperidino-based lithium-zinc combinations in tetrahydrofuran. The 2,3-diphenylated 5-iodo- quinoxaline, 8-iodopyrido[2,3-b]pyrazine and 8-bromo-7-iodopyrido[3,4-b]pyrazine thus obtained were subjected to palladium-catalyzed couplings with arylboronic acids or anilines, and possible subsequent cyclizations to afford the corresponding pyrazino[2,3-a]carbazole, pyrazino[2′,3′:5,6] pyrido[4,3-b]indole and pyrazino[2′,3′:4,5]pyrido[2,3-d]indole, respectively. 8-Iodopyrido[2,3-b] pyrazine was subjected either to a copper-catalyzed C-N bond formation with azoles, or to direct substitution to introduce alkylamino, benzylamino, hydrazine and aryloxy groups at the 8 position. The 8-hydrazino product was converted into aryl hydrazones. Most of the compounds were evaluated for their biological properties (antiproliferative activity in A2058 melanoma cells and disease-relevant kinase inhibition).