Published in

SAGE Publications, Acta Radiologica Open, 11(7), p. 205846011880881, 2018

DOI: 10.1177/2058460118808811

Links

Tools

Export citation

Search in Google Scholar

Dynamic contrast-enhanced magnetic resonance imaging may act as a biomarker for vascular damage in normal appearing brain tissue after radiotherapy in patients with glioblastoma

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Background Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a promising perfusion method and may be useful in evaluating radiation-induced changes in normal-appearing brain tissue. Purpose To assess whether radiotherapy induces changes in vascular permeability (Ktrans) and the fractional volume of the extravascular extracellular space (Ve) derived from DCE-MRI in normal-appearing brain tissue and possible relationships to radiation dose given. Material and Methods Seventeen patients with glioblastoma treated with radiotherapy and chemotherapy were included; five were excluded because of inconsistencies in the radiotherapy protocol or early drop-out. DCE-MRI, contrast-enhanced three-dimensional (3D) T1-weighted (T1W) images and T2-weighted fluid attenuated inversion recovery (T2-FLAIR) images were acquired before and on average 3.3, 30.6, 101.6, and 185.7 days after radiotherapy. Pre-radiotherapy CE T1W and T2-FLAIR images were segmented into white and gray matter, excluding all non-healthy tissue. Ktrans and Ve were calculated using the extended Kety model with the Parker population-based arterial input function. Six radiation dose regions were created for each tissue type, based on each patient’s computed tomography-based dose plan. Mean Ktrans and Ve were calculated over each dose region and tissue type. Results Global Ktrans and Ve demonstrated mostly non-significant changes with mean values higher for post-radiotherapy examinations in both gray and white matter compared to pre-radiotherapy. No relationship to radiation dose was found. Conclusion Additional studies are needed to validate if Ktrans and Ve derived from DCE-MRI may act as potential biomarkers for acute and early-delayed radiation-induced vascular damages. No dose-response relationship was found.