Hindawi, Mathematical Problems in Engineering, (2018), p. 1-10, 2018
DOI: 10.1155/2018/7020828
Full text: Download
Traditional video acquisition systems require complex data compression at the encoder, which makes them unacceptable for resource-limited applications such as wireless multimedia sensor networks (WMSNs). To address this problem, distributed compressive video sensing (DCVS) represents a novel sensing approach with a simple encoder. This method shifts the computational burden from the encoder to the decoder and needs a robust reconstruction algorithm. In this paper, a mixed measurement-based multihypothesis (MH) reconstruction algorithm (mixed-MH) is proposed for DCVS to improve the reconstruction quality at low sampling rates. Considering the inaccuracy of MH prediction when measurements are insufficient, the available side information (SI) is resampled to obtain the artificial measurements, which are then integrated into real measurements via regularization. Furthermore, to avoid the negative effect of SI at high sampling rates, an adaptive regularization parameter is designed to balance the contributions of real and artificial measurements at different sampling rates. The experimental results demonstrate that the proposed mixed-MH prediction scheme outperforms other state-of-the-art algorithms in the reconstruction quality at the same low sampling rate.