Dissemin is shutting down on January 1st, 2025

Published in

PeerJ, PeerJ, (6), p. e5896, 2018

DOI: 10.7717/peerj.5896

Links

Tools

Export citation

Search in Google Scholar

A trait-based ecology to assess the acclimation of a sperm-dependent clonal fish compared to its sexual host

Journal article published in 2018 by Christelle Leung ORCID, Sophie Breton ORCID, Bernard Angers
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

BackgroundSurvival in temporally or spatially changing environments is a prerequisite for the perpetuation of a given species. In addition to genetic variation, the role of epigenetic processes is crucial in the persistence of organisms. For instance, mechanisms such as developmental flexibility enable the adjustment of the phenotype of a given individual to changing conditions throughout its development. However, the extent of factors other than genetic variability, like epigenetic processes, in the production of alternative phenotype and the consequences in realized ecological niches is still unclear.MethodsIn this study, we compared the extent of realized niches between asexual and sexual individuals from different environments. We used a trait-based ecology approach exploiting trophic and locomotive structures to infer the environment that each biotype actually used. More specifically, we compared the morphology of the all-female clonal and sperm-dependent fishChrosomus eos-neogaeusto that of their sexual host speciesC. eosin common garden and natural conditions.ResultsTransfer from natural to controlled conditions resulted in a similar shift in measured morphology for clonal and sexual individuals suggesting comparable level of flexibility in both kinds of organisms. However, clonal, but not sexual, individuals displayed a consistent phenotype when reared in uniform conditions indicating that in absence of genetic variation, one phenotype corresponds to one niche. This contrasted with results from natural conditions where clones were morphologically as variable as sexual individuals within a sampled site. In addition, similar phenotypic changes for both clonal and sexual individuals were observed among the majority of sampled sites, indicating that they responded similarly to the same environments.DiscussionOur results indicated that clones can efficiently use different niches and may evolve in a range of environmental conditions comparable to that of a sexual species, thus underlying the importance of factors other than genetic variability, like epigenetic processes, for coping with environmental heterogeneity.